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It is assumed that a crystal structure in P 1 is fixed and that the seven non-negative numbers RI, R2, Ra, 
R4, R12, R23, R31 are also specified. The random variables (vectors) h, k, !, m are assumed to be uniformly 
and independently distributed in the regions of reciprocal space defined by 

and 

IEhl=Rl, IEkl=R2, IEd=Ra, IEmI=R4, (1) 

IEh+kl=Rt2, IEk+l[=R2a, IEl+hl=Rat, (2) 

h + k + l + m = 0 .  (3) 

Then the structure invariant, (ff=~#h"Jl-(pk-t-(pl-l-(pm, as a function of the primitive random variables 
h,k,l,m, is itself a random variable, and its conditional probability distribution, given (1) and (2), is 
derived and compared with the conditional distribution when only (1) is given. The distribution leads 
to improved estimates for cos ~0 in terms of the seven magnitudes (1) and (2). The results secured here 
suggest a generalization which is described in terms of the 'neighborhood concept'; and a 'principle of 
nested neighborhoods' is formulated. This terminology permits, in turn, an analogy with interpolation 
formulas. 

1. Introduction 

The theory of the structure invariants ~0 = (Oh + (Ok + 
~01+~0m initiated recently (Hauptman, 1974a, b) was 
based on a joint probability distribution of three 
structure factors. The theory led to an estimate for 
the cosine invariant cos ((Oh + ~0k + ~0t + ~0m) dependent 
on the seven magnitudes 

Ifhl, IEkl, IEll, IEml, IEh+kl, IEk+,l, IEl+hl. (1.1) 
Since this theory was based on a distribution of only 
three structure factors, it was not possible to take into 
account the concerted effect of all seven magnitudes 
(1.1) on the value of the cosine invariant. For this 
reason the resulting estimate for the cosine was 
biased, especially when the cosine was negative, and 
this bias had been tentatively attributed to Patterson 
overlap. In the light of the new theory described here, 
which does take into account the mutual correlations 
among the seven magnitudes (1.1), Patterson overlap 
is ruled out as the primary cause of the observed bias 
and the true source is correctly identified and elimi- 
nated almost completely. Thus the present theory, 
which in effect consists of a method for deriving the 
conditional probability distribution of the structure 
invariant ~0h + ~Ok + ~0~ + tPm, given the seven magnitudes 
(1.1), is not only more satisfactory than the earlier one, 
but yields improved estimates for the cosine invariants 
as well. 

Although only the four-phase structure invariant is 
treated in detail here, the method used is clearly 
sufficiently general to be applicable to structure in- 
variants and seminvariants in general, and some 
preliminary work with the three-phase invariants and 

selected seminvariants in PT has already been carried 
out. 

The joint probability distribution of seven structure 
factors derived in the preceding paper [Hauptman, 
1975, equation (2.5)], is the source of a great variety 
of conditional distributions. Only two of these are 
derived here. 

2. The joint conditional probability distribution 
of the four phases q)h, q)k, (PI, q)m, 

given the seven magnitudes 

IEhl, IEkl, IEll, IEm[, IEh+k[, IEk+,[, IEl+h[ 

Suppose that a crystal structure consisting of N iden- 
tical atoms in the space group P 1 is specified and that 
the seven non-negative numbers RI, R2, R3, R4, R12, R23, 
R31 are also fixed. As in the previous paper (Hauptman, 
1975) define the fourfold Cartesian product S x S x S x S 
of reciprocal space S to be the collection of all ordered 
quadruples (h, k,l, m) where h,k, l ,m are reciprocal 
vectors. Suppose next that the ordered quadruple of 
reciprocal vectors (h, k, l, m) is a random variable which 
is uniformly distributed over the subset of S x S x S x S 
for which 

IEhl=Rx, IEkl--R2, lEvi=R3, [EmI=R4, (2.1) 

IEh+kl=R12, IEk+d =R23, IEl+al=R3x, (2.2) 
and 

h + k + l + m = 0 .  (2.3) 

In view of (2.3), the random variables h,k,l ,m, the 
components of the ordered quadruple (h, k, 1, m), are not 
independently distributed in reciprocal space. Note also 
that in order to insure that the domain of the random 
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variable (h,k,l,m) be non-vacuous, it is necessary to 
interpret the exact equality [EhI=R~ of (2.1), for 
example, as an inequality, R1 < IE.I ___ R~ + dry, where 
dR1 is a 'small' positive quantity; and similarly with 
the remainder of (2.1) and (2.2). Then ~h, ~k, ~,  ~m, as 
functions of the primitive random variables h,k,i,m, 
are themselves random variables. Denote by 
P(q$1, ~52, ~3, d~4fRI, Rz, R3, R4, R12, R23, R31) the joint 
conditional probability distribution of the four phases 
~0h,¢k,~0~,~0,,, given (2.1), (2.2) and (2.3). Then 
P ( ~ I ,  ~2, ~3, ~4 [ R1, R2, R3, R4, R12, R23, R31) is f o u n d  
from (2.5) of Hauptman (1975) by fixing R.R2,R3, 
R4, R12, R23, R31 , integrating with respect to t~12 , (~23, ¢31 
from 0 to 27r, and multiplying the result by a suitable 
normalizing constant. In view of the previous paper, 
none of these operations presents any difficulty. Thus, 
in order to carry out the q~2 integration, one collects 
the terms involving ~12 in the exponent of (2.5) of the 
earlier paper to obtain 

2R12 
N1/2 Y12 COS (~12-[-'/~12) , (2.4) 

where Y12 and rh2 are independent of #12, so that the 
#12 integration is immediate. The #23 and #3~ integra- 
tions are done in the same way and one finally obtains, 
correct up to and including terms of order 1/N [since 
O(1/N) of the previous paper consists of all terms of 
order 1/N or higher in which the terms of order 1/N 
are independent of the #'s], 

P(tbl, t~)2, ~3, t~41 Rx, R2, R3, R4, R12 , R23 , R31 ) 

1 
~rC- exp { - 2B cos ( ~  + ~2 + ~3 + ~4)} 

X I 0 ( 2R12 Y12 2R23 ]123 2R31 Y3z 
N1/2 ) Io ( N1/2 )1o( N1/2 ),(2.5) 

where 
2 

B = -~ R1R2R3R4, (2.6) 

Y12 2 2 2 2 [R1R2+ = R 3 R  4 

+ 2Rj.R2R3R4 cos (q01 + ~2 + ~3 + ~4)] 1/2, (2.7) 

I23 2 2 = [ R 2 R  3 2 2 + R1R4 
+ 2R1RzR3R4 cos (~t + ~b 2 + ~3 + ~4)] 1/2, (2.8) 

2 2 2 2 Y31 = [R3R1 + R2R4 
+ 2R~R2R3R4 cos (~1 + ~b2 + ~b3 + ~b4)] ~/2, (2.9) 

K is a suitable normalizing constant, independent of 
~ ,  ~2, ~3, ~4, and I0 is the modified Bessel function. 
Although K is readily found by integrating (2.5) with 
respect to ~ ,  ~2, ~3, ~4 from 0 to 2zc and setting the 
result equal to unity, the value of this normalizing 
factor is not needed for the present purpose and is 
therefore not derived explicitly. 

It is clear from (2.5)-(2.9) that the distribution (2.5) 
is a function of the sum ~ = ~1 + ~2 + ~3 + ~4. Hence 
(2.5) leads directly to the conditional distribution, given 

(2.1) and (2.2), of the s u m  ~9=~Th--l-~k--[-~/71--l-~m , as is 
shown in the next section. 

3. The conditional probability distribution 
of the structure invariant (D---q)h-[-(Dk--l-q)l-4-q)m, 

given the seven magnitudes, 

[Ehl, IEkl, IE, I, lEm[, IEh+kl, IEk+,l, [E,+h[ 

Under the same hypotheses as in § 2, the structure 
invariant 

~7 = ~h + ~gk AI- (/71 "4- ~m (3.1) 

is a random variable whose conditional probability 
distribution, given (2.1) and (2.2), P(#IR1,Rz, Rs, R4, 
RI2,R2a, R31), is readily found from (2.5)-(2.9). Thus, 
correct up to and including terms of order 1/N, the 
major result of this paper is given by 

P(~ [ R1, R2, R3, R4, R12, R23, R31 ) 

1 
~ ~-exp { - 2 B  cos ~} 

NI/2 )1o( NI/2 ) Io k ~i-/-2--], (3.2 ) × Io 

where B is defined by (2.6), 
2 2 Zlz=[R1Rz+R2R]+2R1RzR3R 4 COS ¢~]1/2, (3.3) 
2 2 2 2 Z23 : [R2R3 + R1R4 q- 2 R 1 R 2 R a R  4 cos ~]~/2, (3.4) 
2 2 2 2 Z31 = [R3R1 + RzR4 + 2R1R2R3R 4 COS ~]I/2, (3.5) 

and the normalizing constant L is readily found to be 
oo 

L=2zc ~ (-1)~'+V+Ol~,voI~,+v+o(2B), (3.6) 
It, V, 0 
--oo 

where I~,vo is defined by 

2RI2R1R2 ~ 2R12R3R4 2R23R2R3 

x -Iv (2R23R1R4 2R31R3R1 2R31R2R4 ~ 
N1/2 )1o(  N1/2 ) Io ( -N--iTi ] 

(3.7) 

and I is the modified Bessel function. In the same way 
the conditional expected value of cos ~, given (2.1) 
and (2.2), is found from (3.2). 

6(COS (/7 ] R1, R2, R3, R4, R12 , R23 , R31 } 
oo 
~, ( -  1)u+v+o+1I~,volu+v+o+~(ZB) 

It, V, Q 
--oo 

= oo (3.8) 
( -  1)"+'+°I~,voIu+v+o(2B) 

It, v, Q 
--oo 

Although (3.6)-(3.8) are explicit expressions for the 
normalizing parameter L and the conditional expected 
value of the cosine in terms of the seven magnitudes 
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(1.1), their values are more readily obtained in any 
given case by first calculating the distribution (3.2) 
itself and then computing numerically the value of L 
(if desired) and the expectation value (3.8). The average 
value of [~0l ((1~01)) and the most probable value of 
I¢1 (l¢lmod~) are also readily obtainable from the dis- 
tribution, and all these calculations are sufficiently 
rapid that it is altogether feasible to do several 
thousands of them in any given case. 

3.1. The special case IE.+~I ~ IE~+,I ~ IEl+hl ~0 
In the case that 

then the conditional probability distribution of ¢, 
given (2.1), is found from (3.1) of Hauptman (1975) to 
be, correct up to and including terms of order l/N, 

1 
P(~IR,,R2, R3,R4)~, 2%i0(B-----~exp {Bcos 4} .  (4.1) 

In this case one finds the conditional expected value of 
cos ¢ to be 

,{cos ¢IRt, R2,R3,R,}- It(B) (4.2) 
z0(~) 

IEh+kl =R12,~0 , (3.9) 

IEk+ll =R23~0,  (3.10) 

IEl+hl=R3t~0, (3.11) 

(3.2) reduces to [since/o(0) = 1] 

e(tP I R1, R2, R3, R4, Rt2 ~ R23 ~ R3t ~ 0) 

1 
~ 2nI0(2B) exp { - 2 B c o s  ~} ,  (3.12) 

and in this special case it is readily verified [directly or 
from (3.8)] that the conditional expected value of cos ¢, 
given R1, R2, R3, R4, and Rt2 ~ R23 ~ R31 ~ 0, is given by 

E{COS ¢ [ Rt, R2, R3, R4, RI2 ~ R2a ~ R3t ,~ 0} 
Z~{2a) 

- /0(2B)" (3.13) 

It need hardly be emphasized that (3.13) is always 
negative and tends to - 1  with increasing B. 

Equation (3.13) is to be compared with (3.2) and 
(4.28) (Hauptman, 1974a) of the earlier theory. The 
presence of 2B in the argument of the Bessel functions 
of (3.13), rather than the B which occurs in the older 
theory, almost completely eliminates the bias in the 
older estimates of these cosines which had been 
previously observed, i.e. the estimates were not 
sufficiently negative. (In order to eliminate the bias 
completely it is necessary to take into account terms of 
order 1IN 3/2, as was done in the older theory, but is 
not done here.) This comparison already clearly 
illustrates the improvement which results from the 
ability to take into account the simultaneous interac- 
tions of all seven magnitudes on which the estimate 
for the cosine depends. The inability to do this in the 
earlier theory, which employed the distribution of only 
three structure factors instead of the seven used here, 
biased the estimates of the negative cosines. 

4. The conditional probability distribution 
of the structure invariant q~ = ¢Ph + (Dk "31- ~D1 + q)m, 

given the four magnitudes, 

IE.I, IEkl, IE, I, ]Eml 

If, instead of being given the seven magnitudes (2.1) 
and (2.2), one is given only the four magnitudes (2.1), 

which should be compared with (3.13). This com- 
parison clearly illustrates the dramatic changes which 
may take place when all seven magnitudes (2.2) and 
(2.1) are assumed to be given instead of merely the 
four magnitudes (2.1). In sharp contrast to (3.13), 
(4.2) is always positive and tends to unity with 
increasing B. Comparison of (4.1) with (3.2) is also 
illuminating and is done in some detail in the next 
section. 

5. The applications 

If only the four magnitudes (2.1) are known, the 
conditional distribution of the cosine invariant ~0= 
Ch+¢k+¢l+f0r~ is given by (4.1). If all seven 
magnitudes (2.1) and (2.2) are known, the conditional 
distribution of ~0 is given by (3.2). It is remarkable that 
knowledge of only the three additional magnitudes 

P 
~:3 3 2 R1:3.034 N:29 
~=4 4 ,~ R2=2.766 B=2.316o 

\ \ \  -~=2 5 3 R3=2.217 Iqbltrue=5o 
\\ ~=5C05 R4=1.805 Id'~l . -0  
\ \ "~+-~--7 1 _ _ i-t'lrnoo¢- \~ 2 R12=2.918 
'~\ ]~+~:2 9 7 R23=0.933 
'~\ -~+~: 1 2 1" R31=2.863 

- -  . . . . .  { 
2'0 40 6'0 80 160 1~0 1210 160 1~0 

Degrees 

Fig. 1. The distributions (3.2) ( ) and (4.1) ( - - - )  for the 
values (2.1) and (2.2) shown. The mode of (3"2) is 0, of (4.1) 
always 0. 



H E R B E R T  H A U P T M A N  683 

(2.2) can effect enormous change in the shape of the 
distribution [as the comparison of (4.2) with (3.13) 
already suggests]. Thus (4.1) always has a unique 
maximum at ~0 = 0. Hence if one is given only the four 

~=71 2 R1=2.918 N=29 
~=1 -~ 1 R2=2.863 B=2.273 

" x \  ~=3 4 3 R3=2.276 Iqbltrue=96 * 
\ ~=3 3 4 R4=1.733 iqblmod~105* 

~+~=61 1 R12=1.631 
-~+-~=4 2 2 R23=0.223 

~ ~'+-~=~,5. 5 R31=1.540 

\ 
\ 

N 

2'o 4o 6b 8o  r4o-  o -8o 
Degrees 

Fig. 2. The distributions (3.2) ( ) and (4.1) ( - - - )  for the 
values (2-1) and (2-2) shown. The mode of (3-2) is 105 °, of 
(4"1) always 0. 

~=1~,0 R~=1.408 N=29 
~=78 3 R2=1.592 B=0.731 
~=11 6 1 R3=2.672 Iqbltrue=176* 
Ila=3 24 R4=1.770 iqblmode=180. 

~+~=8 4 3 R12--0.157 
_ 4o4 2 4 R  --0.425 
~+~=10 i"61 R31---0.385 

magnitudes (2.1), then the most probable value of ¢ is 
zero and the larger the value of B the more likely it is 
that ¢ ~0.  The maximum of (3.2), on the other hand, 
may lie anywhere between 0 and 180 ° (or, owing to 
symmetry, between - 180 ° and 0). Thus if one is given 
all seven magnitudes (2.1) and (2.2), the most probable 
value of I¢1 may be 0 or 180 ° or any value between 
these limits. In particular, if R12,R23, R31 are all very 
large then it is likely that I¢1 is near zero, while if 
R12, R23, Rat are all very small then the most probable 
value of l~0l is near 180 °. It is remarkable in fact, as 
reference to (3.2) and (3.12) shows, that, if (3.9) - 
(3.11) hold, then I(0l is almost certainly close to 180 ° 
(unless B is very small) and the larger the value of B 
the closer to 180 ° I~0l is likely to be. These properties 
of the distributions are illustrated by Figs. 1-3 showing 
the conditional distributions (3.2) (solid line) and (4.1) 
(dashed line) for several representative sets of values 
(2.1) and (2.2) for a hypothetical 29-atom structure in 
P 1. [Actually only the distributions of I¢1 are plotted 
but, owing to symmetry, these are the same as (3.2) 
and (4.1) except for a doubling of the scaling param- 
eter. In effect then, Figs. 1-3 are the restrictions of 
(3.2) and (4.1) to the interval 0 < {0 < 180°.] It is note- 
worthy that in all cases (some 160 distributions have 
been calculated) the conditional distribution (3.2) has 
been found to be unimodal, i.e. has precisely one 
maximum, in the interval 0-180 ° . It is conjectured that 
this distribution is always unimodal. 

Next, an idealized structure consisting of N = 2 9  
identical point atoms in the space group P1 was 
constructed (the same structure as that used for Figs. 
1-3 and in Hauptman, 1974a, b) and cosine invariants 
calculated as shown in Tables 1-3.* In all cases three 
estimates were obtained by using the distribution 
(3.2). The first, columns 9, were simply the average 
values of cos ¢ obtained numerically from (3.2). [As 
already explained this is more efficient than using the 
explicit expression (3.8) which requires the calculation 
of two triple sums.] The second estimates, columns 11, 
are the values of cos ((1¢1)) where (1¢1) is the expected 
value of I¢1, again obtained numerically from the 
distribution (3.2). The final estimates, columns 13, are 
the values of cos ([elm) where [¢[,, is the most probable 
value of [¢1 (the mode), obtained by inspection from 
the distribution (3.2) by simply reading off the position 
of the (unique) maximum in the interval 0 to 180 °. The 
columns 14 contain the true values of the cosines, 
cos et, and columns 15-17 the discrepancies between 
the true cosine values and the three estimates respec- 
tively. Thus each entry in the columns 15 is the dif- 
ference between the corresponding entries in the 

2b 40 60 80 120 1:40 160 180 
Degrees 

Fig. 3. The distributions (3.2) ( ) and (4.1) ( - - - )  for the 
values (2.1) and (2.2) shown. The mode of (3.2) is 180 ° , of 
(4.1) always 0. 

* Only fragments of Tables 1-3 are included here. The com- 
plete Tables 1-3 have been deposited with the British Library 
Lending Division as Supplementary Publication No. SUP 
31039 (4 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 13 White 
Friars, Chester CH1 1NZ, England. 
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columns 14 and 9, etc. Table 4 is a summary of  Tables 
1 - 3 .  

It is clear from the tables that the present theory leads 
to estimates for the cosine invariants which are sub- 
stantially better than those derived from the earlier 
theory. The estimates for those cosines calculated to be 
most positive had already been reliable even with the 
older theory (Hauptman, 1974a, Table 2) and this 
calculation is not repeated here. Those cosines cal- 
culated to be most negative reliably identified the 
negative cosines, even in the older theory, but quanti- 
tative agreement had not been quite attained earlier, 
and an inexplicable bias had also been observed. As 
shown by the present Tables 1, 2, and 4 the present 
estimates for the negative cosines are noticeably im- 
proved and the bias substantially reduced. In fact the 
bias is virtually eliminated if the estimate cos ((1~1)) 
is used even when B values are as small as 0.8. (Natu- 
rally the observed bias in the estimates cos (1~1~) of 
Tables 1 and 2 is a necessary consequence of  the re- 
quirement that l~lm=180 ° for the 63 invariants in 
these tables.) 

Those cosines estimated to be in the middle range 
had been, under the old theory, in poor agreement 
with the true values. As shown by Tables 3 and 4 the 
present theory yields substantially better agreement, 
especially if the estimates cos ((l~01)) or cos (l~0lm) are 
used. However these cosines are still determined least 
reliably because of the relatively large value of  the 
variance (compare Fig. 2 with Figs. 1 and 3). 

In summary then, it seems clear that the present 
theory yields estimates for the cosines which are 
already sufficiently reliable to justify further tests and 
even efforts to make applications to structure deter- 
mination. Discrepancies which still persist probably 
arise from a number of  causes: (1) the probabilistic 
nature of  the estimates; (2) the omission of  terms of  
order higher than l/N; (3) artifacts of  the structure, 
e.g. Patterson overlap, pseudo-symmetry, rational 
dependence among atomic coordinates, etc. 

Finally, it should be pointed out that initial applica- 
tions to the solution of  unknown structures of  the 
four-phase invariants have already been made (e.g. 
DeTitta, Edmonds, Langs & Hauptman, 1974; Ein- 
spahr, Gartland, Freeman & Schenk, 1974). It is 
anticipated that with the improvements described in 
this paper more effective use of  these invariants will 
be made in the near future. 

6. The neighborhood concept and the principle 
of nested neighborhoods 

It has been known for many years that provided no 
homometric solutions (other than enantiomorphs) 
exist the structure factor magnitudes ]E[ uniquely 
determine, in general, the values of  the cosine in- 

i variants, and therefore, except for a twofold ambiguity 
I ' in sign, the values of  the structure invariants. In fact 
t] ........ earlier formulas, e.g. B3,o (Karle & Hauptman, 1958), 
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the modified triple product (Hauptman, 1964; Haupt- 
man, Fischer, Hancock & Norton, 1969), and MDKS 
(Hauptman, 1972, p. 192) are dependent on all 
available structure-factor magnitudes or at least large 
numbers of them. The methods and results of this paper 
and the preceding one make plausible a refinement of 
this perception. It is now suggested that the value of a 
cosine invariant is primarily determined by the values 
of one or more small sets of appropriately selected 
structure-factor magnitudes, and is relatively insensi- 
tive to the values of the great bulk of the remaining 
magnitudes. Thus a rough estimate, in the probabilistic 
sense, of the magnitude of the structure invariant 

(fl ~--- ~ h  -~- ~ k  -Jr- (iOl -{- (-/Tm (6.1) 

depends in the first instance on the four magnitudes 

IE~I, IEkI, IE, I, IEml , (6.2) 

and the larger the value of B (2.6) the more reliable 
is the estimate, zero in this case (if one uses the mode: 
near zero if the mean is used). If one adjoins to the 
set (6.2) the three magnitudes 

IEh +kl, IEk +,1, IE, + hi (6.3) 

then one obtains a different estimate, in general, for 
I~01 [dependent on the seven magnitudes (6.2) and (6.3)], 
and this estimate may lie anywhere between 0 and zc. 
The reliability of the latter estimate depends on both 
B and the estimate, the larger the value of B and the 
closer to 0 or to re the value of the estimate, the greater 
the reliability of the estimate. Estimates in the middle 
range (near zU2) or for small values of B are least 
reliable. Since the first estimate, dependent on only the 
four magnitudes (6.2), uses less information than the 
second estimate, dependent on the seven magnitudes 
(6.2) and (6.3), it is natural to expect that the latter 
will, at least in favorable cases, be more reliable than 
the former, and this in fact turns out to be the case. 
In any event a measure of the reliability is given by the 
variance of the conditional probability distribution of 
~0, (4.1) or (3.2) respectively. It is natural to conjec- 
ture that there exists an additional small set of 
magnitudes which, when added to the sets (6.2) and 
(6.3), will, in combination with (6.2) and (6.3), yield a 
still better estimate for I~01; etc. One is led in this way 
to the concept of nested neighborhoods of a structure 

invariant depicted schematically in Fig. 4 for the 
invariant (6.1). The first neighborhood consists of the 
four vectors h, k, 1, m [or the corresponding magnitudes 
(6.2)]. The second neighborhood is the set-theoretic 
union of the first neighborhood and the three addi- 
tional vectors h + k, k + 1, i + h [or the associated mag- 
nitudes (6.3)] shown in the second shell of Fig. 4. The 
identity of the third shell of vectors (or magnitudes) 
indicated by the ?'s of Fig. 4, to be added to the second 
neighborhood in order to obtain the third, is an open 
question. One proceeds in this way to obtain a se- 
quence of nested neighborhoods of the invariant ~0, 
each a subset of the succeeding one and having the 
property defined by the principle of nested neigh- 
borhoods: There exists an estimate for the cosine 
invariant cos ~0 (or IfPl) dependent on the magnitudes 
IEI constituting any neighborhood of ~0, and the more 
magnitudes in the neighborhood the better the es- 
timate, in the probabilistic sense. 

It should be emphasized that the principle of nested 
neighborhoods is not only strongly suggested by the 
available evidence, but some preliminary work on 
the three-phase structure invariants, ~ol + (P2 + (as, 
and the two-phase structure seminvariants, ~01+~02, 
provides additional evidence that the principle holds 
for structure invariants and seminvariants in general, 
not merely the quartets (6.1). The central question is 

/ i  

\ / 

\ 

/ 

/ 
Fig. 4. A sequence of nested neighborhoods for the structure 

invariant (6.1). 

From Table 1 
From Table 2 
From Table 3 

From Table 3 of 
Hauptman (1974b) 
From Table 4 of 
Hauptman (1974b) 

Table 4. Summary o f  Tables 1-3 with a comparison of  some earlier results 

Average error in cosine 
(A,) (~2) (~3) 

-0.229 -0.119 0.194 
-0.118 -0.006 0"193 

0.274 0"188 0.015 

-0.362 

-0.298 

Average magnitude Average Number of Nature of 
of the error value of B contributors estimated 

(lAd) (IA21) (Izf31) (B) to the average cosine 
0-276 0 .209  0.194 0.831 31 Negative 
0.221 0.183 0" 193 1 "205 32 Negative 
0.275 0 .206  0.185 2.369 30 Middle 

range 
0.389 1.231 33 Negative 

0.527 2"044 25 Middle 
range 
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how to identify a sequence of nested neighborhoods for 
a given structure invariant or seminvariant. A be- 
ginning only has been made for the structure invariants 
(6.1). 

Using the present terminology then, the results 
described here partake of the character of an inter- 
polation formula: The value of the structure invariant 
rp, or cosine invariant cos rp, is estimated by means of 
the values of the magnitudes ]E[ 'in the neighborhood' 
of ~0, and the more magnitudes that are used the better, 
in general, the estimate. 

7. Concluding remarks 

Conditional distributions of the structure invariant 
~0 = ~h + ~0k + ~ + ~0m, given, in the first instance, only 
the four magnitudes (2.1) and, in the second instance, 
all seven magnitudes (2.1) and (2.2), have been found. 
The distributions lead to estimates for [~] and cos ~o 
dependent on these magnitudes. The importance of 
the newly acquired ability to take into account the 
concerted effect of these magnitudes on the value of 
the invariant has been stressed. It is suggested that 
conditional distributions, given additional magnitudes, 
will yield still better estimates for the invariants. It is 
noteworthy that the first application of the new method 
is to the four-phase invariant ~0 rather than to the 
much more familiar and more intensively studied 
three-phase invariant ~o~ + ~2-]- (/93. However the avail- 
able evidence strongly suggests that the same 
methods will find important application in the study 
of the three-phase invariants as well as the five-phase 
invariants ~o~ + (/92-}- ~3 --Jl- ~4 • ~5, and, owing to the 
importance of these invariants in the applications, it is 
anticipated that this study will be vigorously pursued. 
Further areas of investigation include the space-group- 

dependent probability distributions, particularly in 
P-f, P21,P21212, and distributions of the structure 
seminvariants. It should be mentioned in conclusion 
that the existence of bimodal or multimodal distribu- 
tions in the whole interval ( - n , n ) ,  e.g. Fig. 2, opens 
up the possibility that these distributions may serve 
as the vehicle for sorting out the different members 
of homometric sets when they exist (in much the 
same way as a distribution like Fig. 2 serves to 
distinguish the enantiomorphs). 
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